ISSN: 2349-5162 | ESTD Year: 2014 |Monthly Issue JIURNAL OF EMEREING TECHNDLIGIES AND INNDVATIVE RESEARCH (JETIR)

CENTRALIZING PROPERTIES OF ($\alpha, 1$)REVERSE DERIVATIONS IN SEMIPRIME RINGS

Chennupalle Divya ${ }^{1}$, Sk.Haseena ${ }^{2}$ and C. Jaya Subba Reddy ${ }^{3}$
${ }^{1}$ Department of CSE, Amrita School of Engineering, Banglore, India.
${ }^{2}$ Research Scholar, Department of Mathematics, S.V.University, Tirupati, A.P., India.
${ }^{3}$ Department of Mathematics, S.V.University, Tirupati- 517502, A.P., India.
E-mail: ${ }^{1,2}$ skhaseena547@gmail.com and ${ }^{3}$ cjsreddysvu@ gmail.com

ABSTRACT: Let R be a semiprime ring with center Z, S be a non-empty subset of R, α be an endomorphism on R and d be an $(\alpha, 1)$ reverse derivation of R. A mapping $d: R \rightarrow R$ is called centralizing derivation of S if $[d(x), x] \in Z$, for all $x \in S$. In the present paper, we study some centralizing properties of $(\alpha, 1)$ Reverse derivations in semiprime rings one of the following conditions holds: (i) $d([x, y])=$ $[x, y]_{\alpha, 1}$, for all $\mathrm{x}, \mathrm{y} \in \mathrm{R}$. (ii) $d([x, y])=-[x, y]_{\alpha, 1}$, for all $\mathrm{x}, \mathrm{y} \in \mathrm{R}$. (iii) $d(x) d(y) \mp x y \in Z$, for all $\mathrm{x}, \mathrm{y} \in \mathrm{R}$. (iv) $d(x o y)=(x o y)_{\alpha, 1}$, for all $\mathrm{x}, \mathrm{y} \in \mathrm{R}$. (v) $d(x o y)=-(x o y)_{\alpha, 1}$, for all $\mathrm{x}, \mathrm{y} \in \mathrm{R}$. Also we prove that d is centralizing on R if d acts as a homomorphism on R and d is centralizing on S if d acts as an anti-homomorphism on R.
Key words: Semiprime ring, Reverse derivation, ($\alpha, 1$)- Reverse derivation, Centralizing mappings, homomorphism and anti-homomorphism.

AMS Subject Classification: 16U10, 16D60, 16N60.

I. INTRODUCTION

The study of centralizing mappings was initiated by E.C.Posner [14]. Bresar and Vukman [4] have introduced the notion of a reverse derivation. Samman and Alyamani [15] and Jaya Subba Reddy [5-6] have studied some properties of prime or semiprime rings with reverse derivations. Merva Ozdeir and Neset Aydin [11] have studied prime and semiprime rings with (α, β) reverse derivations. G.Shobhalatha and et.al [13] have studied centralizing properties of ($\alpha, 1$)- derivations in semiprimerings. Many authors have established commutativity theorems for prime rings or semiprime rings admitting auto-morphisms or reverse derivations which are centralizing or commuting on appropriate subsets of R (See [1, 2, 17]). The purpose of this paper is to study some centralizing properties of $(\alpha, 1)$ reverse derivations in semiprime
rings. Also we prove that d is centralizing on R if d acts as a homomorphism on R and d is centralizing on S if d acts as an anti-homomorphism on R.

II. PRELIMINARIES

Throughout this paper, R will represent an associative ring with center Z. A ring R is said to be prime if $x R y=0$ implies that either $x=0$ or $y=0$ and semiprime if $x R x=0$ implies that $x=0$, where $x, y \in R$. A prime ring is obviously semiprime for any $x, y \in R$, the symbol $[x, y]$ stands for the commutator $x y-y x$ and the symbol (x, y) stands for the anti-commutator $x y+y x$. A reverse derivation d on R is determined to be an additive endomorphism satisfying the product rule $d(x y)=d(y) x+y d(x), x, y \in R$. Let α be an endomorphism on R. An additive mapping from R into itself to be an $(\alpha, 1)$ reverse derivation if $d(x y)=d(y) \alpha(x)+y d(x)$, for all x, y $\in \mathrm{R}$. Let S be a non-empty subset of R. A mapping f from R into itself is called centralizing on S if $[f(x), x] \in Z$, for all $x \in S$ and is called commuting on S if $[f(x), x]=0$, for all $x \in S$. If $d(x y)=d(x) d(y)$ or $d(x y)=d(y) d(x)$, for all $\mathrm{x}, \mathrm{y} \in \mathrm{R}$, then d is said to act as homomorphism or anti-homomorphism on R respectively. Throughout the present paper, we will make extensive use of the following basic commutator identities [12]:

$$
\begin{gathered}
{[x, y z]=y[x, z]+[x, y] z ;} \\
{[x y, z]=[x, z] y+x[y, z] ;} \\
{[x y, z]_{\alpha, 1}=x[y, z]_{\alpha, 1}+[x, z] y=x[y, \alpha(z)]+[x, z]_{\alpha, 1} y ;} \\
{[x, y z]_{\alpha, 1}=y[x, z]_{\alpha, 1}+[x, y]_{\alpha, 1} \alpha(z) ;} \\
x o(y z)=(x o y) z-y[x, z]=y(x o z)+[x, y] z ; \\
(x y) o z=x(y o z)-[x, z] y=(x o z) y+x[y, z] ; \\
(x o(y z))_{\alpha, 1}=(x o y)_{\alpha, 1} \alpha(z)-y[x, z]_{\alpha, 1}=y(x o z)_{\alpha, 1}+[x, y]_{\alpha, 1} \alpha(z) ; \\
((x y) o z)_{\alpha, 1}=x(y o z)_{\alpha, 1}-[x, z] y=(x o z)_{\alpha, 1} y+x[y, \alpha(z)] .
\end{gathered}
$$

III. MAIN RESULTS

Theorem 3.1: Let R be a semiprime ring and d be an $(\alpha, 1)$ reverse derivation of R. If d satisfies one of the following conditions, then d is centralizing.
(i) $d([x, y])=[x, y]_{\alpha, 1}$, for all $x, y \in R$.
(ii) $d([x, y])=-[x, y]_{\alpha, 1}$, for all $x, y \in R$.

Proof: (i) Assume that $d([x, y])=[x, y]_{\alpha, 1}$, for all $x, y \in R$.
Replacing y by $x y$, we get $d([x, x y])=[x, x y]_{\alpha, 1}$, for all $x, y \in R$.
$d(y) \alpha([x, x])+y d([x, x])+d([x, y]) \alpha(x)+[x, y] d(x)=y[x, x]_{\alpha, 1}+[x, y]_{\alpha, 1} \alpha(x)$.
Using (3.1), we obtain $[x, y] d(x)=0$, for all $\mathrm{x}, \mathrm{y} \in \mathrm{R}$.
Substituting $d(x) y$ for y in (3.2) and using (3.2), we have $[x, d(x)] y d(x)=0$.
Replacing y by $y x$ in (3.3) we get $[x, d(x)] y x d(x)=0$, for all $\mathrm{x}, \mathrm{y} \in \mathrm{R}$.
Multiplying (3.3) on the right of x, we have $[x, d(x)] y d(x) \mathrm{x}=0$.
Subtracting (3.5) from (3.4), we arrive at $[x, d(x)] y[x, d(x)]=0$, for $\mathrm{x}, \mathrm{y} \in \mathrm{R}$.
By the semiprimeness of R , we find that $[x, d(x)]=0$, for all $x \in R$ and so $[x, d(x)] \in Z$. Hence d is commuting and so centralizing.
(ii) If d is an $(\alpha, 1)$ reverse derivation satisfying the property $d([x, y])=-[x, y]_{\alpha, 1}$, for all $x, y \in R$, then
$(-d)$ satisfies the condition $(-d)([x, y])=-[x, y]_{\alpha, 1}$, for all $x, y \in R$.
Hence d is centralizing by condition (i).
Corollary 3.2: Let R be a prime ring and d be an $(\alpha, 1)$ reverse derivation of R. If d satisfies one of the following conditions, then d is centralizing.
(i) $d([x, y])=[x, y]_{\alpha, 1}$, for all $x, y \in R$.
(ii) $d([x, y])=-[x, y]_{\alpha, 1}$, for all $x, y \in R$.

Theorem 3.3: Let R be a semiprime ring and d be an $(\alpha, 1)$ reverse derivation of R. If d acts as a homomorphism on R, then d is centralizing.

Proof: Assume that d acts as a homomorphism on R.
Now we have $\mathrm{d}(\mathrm{xy})=\mathrm{d}(\mathrm{x}) \mathrm{d}(\mathrm{y})$, for all $\mathrm{x}, \mathrm{y} \in \mathrm{R}$.
$d(y) \alpha(x)+y d(x)=d(x) d(y)$, for all $\mathrm{x}, \mathrm{y} \in \mathrm{R}$.
Replacing x by $z x, z \in R$ in the above equation, we get
$d(y) \alpha(z) \alpha(\mathrm{x})+y d(x)(z)+y x d(z)=d(y) d(x) \alpha(z)+d(y) x d(z)$, for all $\mathrm{x}, \mathrm{y} \in \mathrm{R}$.
Using the hypothesis and d is derivation on R in the last relation gives $x y d(z)=d(y) x d(z)$, and so $(d(y)-y) x d(z)=0$, for all $\mathrm{x}, \mathrm{y} \in \mathrm{R}$.
Writing x by $d(x)$ in (3.7) we get $(d(y)-y) d(x) d(z)=0$, for all $x, y, z \in R$.
By the hypothesis, we obtain $(d(y)-y) d(x z)=(d(y)-y) d(z) \alpha(x)+(d(y)-y) z d(x)=0$.
Using (3.7), we have $(d(y)-y) d(z) \alpha(x)=0$, and so $d(y) d(z) \alpha(x)=y d(z) \alpha(x)$,
$d(z y) \alpha(x)=d(y) \alpha(z) \alpha(x)+y d(z) \alpha(x)=y d(z) \alpha(x)$. i.e., $d(y) \alpha(z) \alpha(x)=0$, for all $\mathrm{x}, \mathrm{y} \in \mathrm{R}$.
Replacing y by x in (3.9), we get $d(x) \alpha(z) \alpha(x)=0$.
Writing $\alpha(x)$ by $d(x)$ in (3.10), we get $d(x) \alpha(z) d(x)=0$.
Replacing $d(x)$ by $x d(x)$ in (3.11), we get $x d(x) \alpha(z) x d(x)=0$, for all $\mathrm{x}, \mathrm{y} \in \mathrm{R}$.
Again replacing $d(x)$ by $d(x) x$ in (3.11), we get $d(x) x \alpha(z) d(x) \mathrm{x}=0$, for all $\mathrm{x}, \mathrm{z} \in \mathrm{R}$.
Subtracting (3.13) from (3.12) and replace z by y , we arrive at $[x, d(x)] \alpha(y)[x, d(x)]=0$, for all x , $\mathrm{y} \in \mathrm{R}$. By the semiprimeness of R, we find that $[x, d(x)]=0$, for all $x \in R$ and so $[x, d(x)] \in Z$. Hence d is commuting and so d is centralizing.

Corollary 3.4: Let R be a prime ring and d be an $(\alpha, 1)$ reverse derivation of R. If d acts as a homomorphism on R, then d is centralizing.

Theorem 3.5: Let R be a semiprime ring and S be a non-empty subset of R. Let d be an $(\alpha, 1)$ reverse derivation of R such that $\alpha(x)=x$, for all $\mathrm{x} \in \mathrm{S}$. If d acts as an anti-homomorphism on R, then d is centralizing on S.

Proof: Assume that d acts as an anti- homomorphism on R. Now by the hypothesis we have
$d(x y)=d(y) \alpha(x)+y d(x)=d(y) d(x)$, for all $\mathrm{x}, \mathrm{y} \in \mathrm{R}$.
Replacing x by xy in the last relation and using d is an $(\alpha, 1)$ reverse derivation of R, we arrive at $d(y) \alpha(x) \alpha(y)=d(y) \alpha(x) d(y)$, for all $x, y \in R$.
That is $d(y) \alpha(x) d(y)=d(y) \alpha(x) d(y)$, for all $x, y \in R$.
And writing $x y$ by x in (3.15), we have $d(y) \alpha(x)(d y) \alpha(y)-\alpha(y) d(y))=0$ and so $d(y) \alpha(x)[d(y), \alpha(y)]=0$, for all $x, y \in R$.

Interchange x and y places in the last relation, we get $\mathrm{d}(\mathrm{x}) \alpha(\mathrm{x})[\mathrm{d}(\mathrm{x}), \alpha(\mathrm{x})]=0$, for all $\mathrm{x} \in \mathrm{R}$.
Using the same arguments in the proof of Theorem 3.1 (i), we obtain $[\mathrm{d}(\mathrm{x}), \alpha(\mathrm{x})]=0$.
Since $\alpha(x)=x$, for all $\mathrm{x} \in \mathrm{S}$, then $[\mathrm{d}(\mathrm{x}), \mathrm{x}]=0$, for all $\mathrm{x} \in \mathrm{S}$.
Hence d is commuting on S, and d is centralizing on S.
Corollary 3.6: Let R be a prime ring and d be an $(\alpha, 1)$ reverse derivation of R. If d acts as antihomomorphism on R, then R is commutative integral domain.
Theorem 3.7: Let R be a semiprime ring and d be an ($\alpha, 1$) reverse derivation of R. If R admits an $(\alpha, 1)$ reverse derivation such that $\mathrm{d}(\mathrm{x}) \mathrm{d}(\mathrm{y})-\mathrm{xy} \in \mathrm{Z}$, for all $\mathrm{x}, \mathrm{y} \in R$, then d is centralizing.
Proof: Given hypothesis $\mathrm{d}(\mathrm{x}) \mathrm{d}(\mathrm{y})-\mathrm{xy} \in \mathrm{Z}$, for all $\mathrm{x}, \mathrm{y} \in R$.
Replacing x by zx in the hypothesis, we get
$d(x) \alpha(z) d(y)+x(d(z) d(y)-z y) \in Z$, for all $x, y, z \in R$.
Commuting (3.16) with x, we have $[d(x) \alpha(z) d(y), x]=0$, for all $x, y, z \in R$ and so
$[\mathrm{d}(\mathrm{x}) \alpha(\mathrm{z}), \mathrm{x}] \mathrm{d}(\mathrm{y})+\mathrm{d}(\mathrm{x}) \alpha(\mathrm{z})[\mathrm{d}(\mathrm{y}), \mathrm{x}]=0$, for all $\mathrm{x}, \mathrm{y}, \mathrm{z} \in \mathrm{R}$.
Writing $\alpha(z)$ by $z d(t), t \in R$ in this equation and using this equation yields that
$[\mathrm{d}(\mathrm{x}) \mathrm{zd}(\mathrm{t}), \mathrm{x}] \mathrm{d}(\mathrm{y})+\mathrm{d}(\mathrm{x}) \mathrm{zd}(\mathrm{t})[\mathrm{d}(\mathrm{y}), \mathrm{x}]=0$.
That is, $[d(x) z d(t)[d(y), x]=0$, for all $t, x, y, z \in R$.
Taking x instead of y in the above equation, we find that
$d(x) z d(t)[d(x), x]=0$, for all $t, x, z \in R$.
Multiplying (3.17) on the left by x, we have $x d(x) z d(t)[d(x), x]=0$, for all $t, x, z \in R$.
Again replacing z by $x z$ in (3.18), we obtain $d(x) x z d(t)[d(x), x]=0$, for all $t, x, z \in R$.
Subtracting (3.18) from (3.19), we see that $[\mathrm{d}(\mathrm{x}), \mathrm{x}] \mathrm{zd}(\mathrm{t})[\mathrm{d}(\mathrm{x}), \mathrm{x}]=0$.
Again multiplying (3.20) on the left by $d(t)$, we have $d(t)[d(x), x] z d(t)[d(x), x]=0$, for $t, x, z \in R$.
Since R is semiprime ring, we get $d(t)[d(x), x]=0$, for all $t, x \in R$.
Substituting $t x$ for t in the last equation and using the last equation, we obtain $d(x) \alpha(t)[d(x), x]=0$, for all $t, x \in R$.

Using the same arguments in the proof of Theorem 3.1(i), we conclude that $[\mathrm{d}(\mathrm{x}), \mathrm{x}] \alpha(\mathrm{t})[\mathrm{d}(\mathrm{x}), \mathrm{x}]=0$, for all $\mathrm{t}, \mathrm{x} \in \mathrm{R}$.Again using the semiprimeness of R, we get $[\mathrm{d}(\mathrm{x}), \mathrm{x}]=0$, for all $\mathrm{x} \in \mathrm{R}$.

This yields that d is commuting, and so d is centralizing.
Corollary 3.8: Let R be a prime ring and d be an $(\alpha, 1)$ reverse derivation of R. If R admits an $(\alpha, 1)$ reverse derivation such that $\mathrm{d}(\mathrm{x}) \mathrm{d}(\mathrm{y})-\mathrm{xy} \in \mathrm{Z}$, for all $\mathrm{x}, \mathrm{y} \in R$, then d is centralizing.
In the similar manner of Theorem 4, we obtain the following theorem.
Theorem 3.9: Let R be a semiprime ring and d be an $(\alpha, 1)$ reverse derivation of R. If R admits an $(\alpha, 1)$ reverse derivation such that $\mathrm{d}(\mathrm{x}) \mathrm{d}(\mathrm{y})+\mathrm{xy} \in \mathrm{Z}$, for all $\mathrm{x}, \mathrm{y} \in R$, then d is centralizing.

Corollary 3.10: Let R be a prime ring and d be an $(\alpha, 1)$ reverse derivation of R. If R admits an $(\alpha, 1)$ reverse derivation such that $\mathrm{d}(\mathrm{x}) \mathrm{d}(\mathrm{y})+\mathrm{xy} \in \mathrm{Z}$, for all $\mathrm{x}, \mathrm{y} \in R$, then d is centralizing.

Theorem 3.11: Let R be a semiprime ring and d be an $(\alpha, 1)$ reverse derivation of R. If d satisfies one of the following conditions, then d is centralizing.
(i) $d(x o y)=(x o y)_{\alpha, 1}$, for all $x, y \in R$.
(ii) $d(x o y)=-(x o y)_{\alpha, 1}$, for all $x, y \in R$.

Proof: (i) Assume that $d(x o y)=(x o y)_{\alpha, 1}$, for all $x, y \in R$.
Replacing x by $\mathrm{y} x$, we get $d((y x) o y)=((y x) o y)_{\alpha, 1}$, for all $x, y \in R$.
$d(\mathrm{y}(\mathrm{xoy})-[y, y] x)=y(x o y)_{\alpha, 1}-[y, y] x$, for all $x, y \in R$.
$d(x o y) \alpha(y)+(x o y) d(y)-x d([y, y])=y(x o y)_{\alpha, 1}$, for all $x, y \in R$.
Using hypothesis, we obtain $(x o y)_{\alpha, 1} \alpha(y)+(x o y) \mathrm{d}(\mathrm{y})-x[y, y]_{\alpha, 1}=y(x o y)_{\alpha, 1}$, for all $x, y \in R$.
Implies that $(x o y) \mathrm{d}(\mathrm{y})=0$, for all $x, y \in R$.
Interchange x and y place in (3.21), we have $(y o x) \mathrm{d}(\mathrm{x})=0$, for $x, y \in R$.
Replacing y by $z y$ in (3.22) and using (3.21), we get $[x, z] y d(x)=0$, for all $\mathrm{x}, \mathrm{y}, \mathrm{z} \in \mathrm{R}$.
Again replacing z by $d(x)$ in the above equation, we have $[x, d(x)] y d(x)=0$, for all $\mathrm{x}, \mathrm{y} \in \mathrm{R}$.
Replacing y by $y x$ in (3.23), we get $[x, d(x)] y x d(x)=0$.
Multiplying (3.23) on the right of x, we have $[x, d(x)] y d(x) \mathrm{x}=0$, for all $\mathrm{x}, \mathrm{y} \in \mathrm{R}$.
Subtracting (3.25) from (3.24), we arrive at $[x, d(x)] y[x, d(x)]=0$, for all $\mathrm{x}, \mathrm{y} \in \mathrm{R}$.
By the semiprimeness of R , we find that $[x, d(x)]=0$, for all $x \in R$ and so $[x, d(x)] \in Z$.
Hence d is commuting and so centralizing.
(ii) In the similar manner, we can prove that $d(x o y)=-(x o y)_{\alpha, 1}$, for all $x, y \in R$.

Corollary 3.12: Let R be a prime ring and d be an $(\alpha, 1)$ reverse derivation of R. If d satisfies one of the following conditions, then d is centralizing.
(i) $d(x o y)=(x o y)_{\alpha, 1}$, for all $x, y \in R$.
(ii) $d(x \circ y)=-(x \circ y)_{\alpha, 1}$, for all $x, y \in R$.

REFERENCES

[1] Argac.N, 2006. On prime and semiprime rings with derivations, Algebra Colloq., 13(3): 371-380.
[2] Bell.H.E and Martindale, 1987. Centralizing mappings of semiprime rings, Can.Math.Bull, 30: 92-101.
[3] Bell.H.E and Kappe.L.C, 1989. Rings in which derivations satisfy certain algebraic conditions, Acta. Math.Hungar, 53: 339-346.
[4] Bresar.M and Vukman.J, 1989. On some additive mapping in rings with involution, Aeq.Math.,38: 178185.
[5] Jaya Subba Reddy.C and Hemavathi.K, 2014. Reverse Derivations on Semi prime rings, Ultra Scientist of Physical Sciences (Int.J. Phy. Sci.), 26(1A): 111-113.
[6] Jaya Subba Reddy.C, Hemavathi.K and Gurivi Reddy.P, 2014. Some Results on Reverse Derivations in Prime Rings, Math.Sci.Int.Research.J, 3(2): 734-735.
[7] Jaya Subba Reddy.C and Haseena.Sk, 2021. Homomorphism or Anti-Homomorphism of Left ($\alpha, 1$) derivations in Prime rings, Int.J.Mathematical Archive, 12(5): 45-49.
[8] Jaya Subba Reddy.C and Haseena.Sk, 2021. ($\alpha, 1$)-Reverse derivations on Prime near rings, International Journal Algebra, 15(40): 165-170.
[9] Jaya Subba Reddy.C, Haseena.Sk and Chennupalle Divya, 2021. On Jordan ideals and Generalized $(\alpha, 1)$ - Reverse derivations in *- prime rings, Journal of University of Shanghai for Science and Technology, 23(11): 236-242.
[10] Mayne.J.H, 1976. Centralizing auto-morphisms of prime rings, Can.Math.Bull, 19: 113-115.
[11] Merva Ozdeir and Neset Aydin, 2018. (α, β)-Reverse derivations on Prime and Semiprime rings, Int. J. Open problems in Comp.\& Math., 11(3): 48-59.
[12] Muhammad Anwar Chaudry, Oznus Golbasi and Emine Koc, 2015. Some results on Generalized (α, β) - Derivations in *- prime rings, Int.J.Math.Math.Sci., 2015: 1-6.
[13] NagaMalleswari.G, Sreenivasulu.S and Shobhalatha.G, 2020. Centralizing properties of $(\alpha, 1)$ derivations in Semiprime rings, Int.J.Math.And Appl., 8(1): 127-132.
[14] Posner.E.C, 1957. Derivations in prime rings, Proc.Amer.Math.Soc, 8: 1093-1100.
[15] Samman.M and Alyamani.N, 2007. Derivations and reverse derivations in semiprime rings, Int.J. Forum, 39(2): 1895-1902.
[16] Sandhu.G.S and Kumar.D, 2019. Annihilator conditions of multiplicative (Generalized) reverse derivation on prime rings, Int.Elec.J.Algebra, 25: 87-103.
[17] Yenigul.M.S and Argac.N, 1994. On prime and semiprime rings with α derivations, Turk.J.Math., 18: 280-284.

