

ISSN: 2349-5162 | ESTD Year : 2014 | Monthly Issue JOURNAL OF EMERGING TECHNOLOGIES AND INNOVATIVE RESEARCH (JETIR)

An International Scholarly Open Access, Peer-reviewed, Refereed Journal

CENTRALIZING PROPERTIES OF (α, 1)-REVERSE DERIVATIONS IN SEMIPRIME RINGS

Chennupalle Divya¹, Sk.Haseena² and C. Jaya Subba Reddy³ ¹Department of CSE, Amrita School of Engineering, Banglore, India. ²Research Scholar, Department of Mathematics, S.V.University, Tirupati, A.P., India. ³Department of Mathematics, S.V.University, Tirupati- 517502, A.P., India. E-mail: ^{1,2}skhaseena547@gmail.com and ³cjsreddysvu@gmail.com

ABSTRACT: Let *R* be a semiprime ring with center *Z*, *S* be a non-empty subset of *R*, α be an endomorphism on *R* and *d* be an $(\alpha, 1)$ reverse derivation of *R*. A mapping $d: R \to R$ is called centralizing derivation of *S* if $[d(x), x] \in Z$, for all $x \in S$. In the present paper, we study some centralizing properties of $(\alpha, 1)$ Reverse derivations in semiprime rings one of the following conditions holds: $(i)d([x, y]) = [x, y]_{\alpha, 1}$, for all $x, y \in R$. $(ii)d([x, y]) = -[x, y]_{\alpha, 1}$, for all $x, y \in R$. $(iii)d(x)d(y) \neq xy \in Z$, for all $x, y \in R$. $(iv)d(xoy) = (xoy)_{\alpha, 1}$, for all $x, y \in R$. $(v)d(xoy) = -(xoy)_{\alpha, 1}$, for all $x, y \in R$. Also we prove that *d* is centralizing on *R* if *d* acts as a homomorphism on *R* and *d* is centralizing on *S* if *d* acts as an anti-homomorphism on *R*.

Key words: Semiprime ring, Reverse derivation, $(\alpha, 1)$ - Reverse derivation, Centralizing mappings, homomorphism and anti-homomorphism.

AMS Subject Classification: 16U10, 16D60, 16N60. I. INTRODUCTION

The study of centralizing mappings was initiated by E.C.Posner [14]. Bresar and Vukman [4] have introduced the notion of a reverse derivation. Samman and Alyamani [15] and Jaya Subba Reddy [5-6] have studied some properties of prime or semiprime rings with reverse derivations. Merva Ozdeir and Neset Aydin [11] have studied prime and semiprime rings with (α , β) reverse derivations. G.Shobhalatha and etal [13] have studied centralizing properties of (α , 1)- derivations in semiprimerings. Many authors have established commutativity theorems for prime rings or semiprime rings admitting auto-morphisms or reverse derivations which are centralizing or commuting on appropriate subsets of *R* (See [1, 2, 17]). The purpose of this paper is to study some centralizing properties of (α , 1) reverse derivations in semiprime

rings. Also we prove that d is centralizing on R if d acts as a homomorphism on R and d is centralizing on S if d acts as an anti-homomorphism on R.

II. PRELIMINARIES

Throughout this paper, *R* will represent an associative ring with center *Z*. A ring *R* is said to be prime if xRy = 0 implies that either x = 0 or y = 0 and semiprime if xRx = 0 implies that x = 0, where $x, y \in R$. A prime ring is obviously semiprime for any $x, y \in R$, the symbol [x, y] stands for the commutator xy - yx and the symbol (x, y) stands for the anti-commutator xy + yx. A reverse derivation *d* on *R* is determined to be an additive endomorphism satisfying the product rule d(xy) = d(y)x + yd(x), $x, y \in R$. Let α be an endomorphism on *R*. An additive mapping from *R* into itself to be an $(\alpha, 1)$ reverse derivation if $d(xy) = d(y)\alpha(x) + yd(x)$, for all $x, y \in R$. Let *S* be a non-empty subset of *R*. A mapping *f* from *R* into itself is called centralizing on S if $[f(x), x] \in Z$, for all $x \in S$ and is called commuting on S if [f(x), x] = 0, for all $x \in S$. If $d(xy) = d(x)d(y) \operatorname{ord}(xy) = d(y)d(x)$, for all $x, y \in R$, then *d* is said to act as homomorphism or anti-homomorphism on *R* respectively. Throughout the present paper, we will make extensive use of the following basic commutator identities [12]:

$$[x, yz] = y[x, z] + [x, y]z;$$

$$[xy, z] = [x, z]y + x[y, z];$$

$$[xy, z]_{\alpha,1} = x[y, z]_{\alpha,1} + [x, z]y = x[y, \alpha(z)] + [x, z]_{\alpha,1}y;$$

$$[x, yz]_{\alpha,1} = y[x, z]_{\alpha,1} + [x, y]_{\alpha,1}\alpha(z);$$

$$xo(yz) = (xoy)z - y[x, z] = y(xoz) + [x, y]z;$$

$$(xy)oz = x(yoz) - [x, z]y = (xoz)y + x[y, z];$$

$$(xo(yz))_{\alpha,1} = (xoy)_{\alpha,1}\alpha(z) - y[x, z]_{\alpha,1} = y(xoz)_{\alpha,1} + [x, y]_{\alpha,1}\alpha(z);$$

$$((xy)oz)_{\alpha,1} = x(yoz)_{\alpha,1} - [x, z]y = (xoz)_{\alpha,1}y + x[y, \alpha(z)].$$

III. MAIN RESULTS

Theorem 3.1: Let *R* be a semiprime ring and *d* be an $(\alpha, 1)$ reverse derivation of *R*. If *d* satisfies one of the following conditions, then *d* is centralizing.

(i)
$$d([x, y]) = [x, y]_{\alpha, 1}$$
, for all $x, y \in R$.

(ii)
$$d([x, y]) = -[x, y]_{\alpha, 1}$$
, for all $x, y \in R$.

Proof: (i) Assume that
$$d([x, y]) = [x, y]_{\alpha, 1}$$
, for all $x, y \in R$. (3.1)

Replacing y by xy, we get $d([x, xy]) = [x, xy]_{\alpha,1}$, for all $x, y \in R$.

 $d(y)\alpha([x,x]) + yd([x,x]) + d([x,y])\alpha(x) + [x,y]d(x) = y[x,x]_{\alpha,1} + [x,y]_{\alpha,1}\alpha(x).$

Using (3.1), we obtain
$$[x, y] d(x) = 0$$
, for all x, $y \in \mathbb{R}$. (3.2)

Substituting
$$d(x)y$$
 for y in (3.2) and using (3.2), we have $[x, d(x)]yd(x) = 0.$ (3.3)

Replacing y by yx in (3.3) we get [x, d(x)]yxd(x) = 0, for all x, y $\in \mathbb{R}$. (3.4)

Multiplying (3.3) on the right of x, we have
$$[x, d(x)]yd(x)x = 0.$$
 (3.5)

Subtracting (3.5) from (3.4), we arrive at [x, d(x)] y [x, d(x)] = 0, for x, y $\in \mathbb{R}$.

By the semiprimeness of R, we find that [x, d(x)] = 0, for all $x \in R$ and so $[x, d(x)] \in Z$. Hence d is commuting and so centralizing.

(ii) If *d* is an $(\alpha, 1)$ reverse derivation satisfying the property $d([x, y]) = -[x, y]_{\alpha, 1}$, for all $x, y \in R$, then **JETIR2112207 Journal of Emerging Technologies and Innovative Research (JETIR)** www.jetir.org **C46**

(-*d*) satisfies the condition $(-d)([x, y]) = -[x, y]_{\alpha, 1}$, for all $x, y \in R$.

Hence *d* is centralizing by condition (i).

Corollary 3.2: Let R be a prime ring and d be an $(\alpha, 1)$ reverse derivation of R. If d satisfies one of the following conditions, then d is centralizing.

(i)
$$d([x, y]) = [x, y]_{\alpha, 1}$$
, for all $x, y \in R$.

(ii) $d([x, y]) = -[x, y]_{\alpha, 1}$, for all $x, y \in R$.

Theorem 3.3: Let R be a semiprime ring and d be an $(\alpha, 1)$ reverse derivation of R. If d acts as a homomorphism on *R*, then *d* is centralizing.

Proof: Assume that *d* acts as a homomorphism on *R*.

Now we have
$$d(xy) = d(x)d(y)$$
, for all $x, y \in \mathbb{R}$. (3.6)

 $d(y)\alpha(x) + yd(x) = d(x)d(y)$, for all x, y $\in \mathbb{R}$.

Replacing x by zx, $z \in R$ in the above equation, we get

 $d(y)\alpha(z)\alpha(x) + yd(x)(z) + yxd(z) = d(y)d(x)\alpha(z) + d(y)xd(z)$, for all x, y $\in \mathbb{R}$.

Using the hypothesis and d is derivation on R in the last relation gives xyd(z) = d(y)xd(z), and so (d(y) - y)xd(z) = 0, for all x, y $\in \mathbb{R}$. (3.7)

Writing x by d(x) in (3.7) we get (d(y) - y) d(x) d(z) = 0, for all x, y, $z \in R$.

By the hypothesis, we obtain $(d(y) - y)d(xz) = (d(y) - y)d(z)\alpha(x) + (d(y) - y)zd(x) = 0.$ (3.8) Using (3.7), we have $(d(y) - y) d(z) \alpha(x) = 0$, and so $d(y) d(z) \alpha(x) = y d(z) \alpha(x)$,

 $d(zy) \alpha(x) = d(y) \alpha(z) \alpha(x) + yd(z) \alpha(x) = yd(z) \alpha(x). i.e., d(y) \alpha(z) \alpha(x) = 0, \text{ for all } x, y \in \mathbb{R}.$ (3.9) Replacing y by x in (3.9), we get $d(x)\alpha(z)\alpha(x) = 0$. (3.10)

Writing
$$\alpha(x)$$
 by $d(x)$ in (3.10), we get $d(x)\alpha(z)d(x) = 0.$ (3.11)

Replacing d(x) by xd(x) in (3.11), we get $xd(x)\alpha(z)xd(x) = 0$, for all x, y $\in \mathbb{R}$. (3.12)

Again replacing d(x) by d(x)x in (3.11), we get $d(x)x\alpha(z)d(x)x = 0$, for all x, $z \in \mathbb{R}$. (3.13)

Subtracting (3.13) from (3.12) and replace z by y, we arrive at $[x, d(x)]\alpha(y)[x, d(x)] = 0$, for all x, $y \in \mathbb{R}$. By the semiprimeness of R, we find that [x, d(x)] = 0, for all $x \in \mathbb{R}$ and so $[x, d(x)] \in \mathbb{Z}$. Hence d is commuting and so d is centralizing.

Corollary 3.4: Let R be a prime ring and d be an $(\alpha, 1)$ reverse derivation of R. If d acts as a homomorphism on *R*, then *d* is centralizing.

Theorem 3.5: Let R be a semiprime ring and S be a non-empty subset of R. Let d be an $(\alpha, 1)$ reverse derivation of R such that $\alpha(x) = x$, for all $x \in S$. If d acts as an anti-homomorphism on R, then d is centralizing on S.

Proof: Assume that d acts as an anti- homomorphism on R. Now by the hypothesis we have

 $d(xy) = d(y)\alpha(x) + yd(x) = d(y)d(x)$, for all x, y $\in \mathbb{R}$.

Replacing x by xy in the last relation and using d is an $(\alpha, 1)$ reverse derivation of R, we arrive at $d(y)\alpha(x)\alpha(y) = d(y)\alpha(x)d(y)$, for all x, y $\in \mathbb{R}$. (3.14)

That is $d(y)\alpha(x)d(y) = d(y)\alpha(x)d(y)$, for all x, $y \in \mathbb{R}$. (3.15)

And writing xy by x in (3.15), we have $d(y)\alpha(x)(d(y)\alpha(y) - \alpha(y)d(y)) = 0$ and so $d(y)\alpha(x)[d(y),\alpha(y)] = 0$, for all x, $y \in R$.

c47

www.jetir.org (ISSN-2349-5162) © 2021 JETIR December 2021, Volume 8, Issue 12 Interchange x and y places in the last relation, we get $d(x)\alpha(x)[d(x),\alpha(x)] = 0$, for all $x \in \mathbb{R}$. Using the same arguments in the proof of Theorem 3.1 (i), we obtain $[d(x), \alpha(x)] = 0$. Since $\alpha(x) = x$, for all $x \in S$, then [d(x), x] = 0, for all $x \in S$. Hence *d* is commuting on *S*, and *d* is centralizing on *S*. **Corollary 3.6:** Let R be a prime ring and d be an $(\alpha, 1)$ reverse derivation of R. If d acts as antihomomorphism on R, then R is commutative integral domain. **Theorem 3.7:** Let R be a semiprime ring and d be an $(\alpha, 1)$ reverse derivation of R. If R admits an $(\alpha, 1)$ reverse derivation such that $d(x)d(y) - xy \in Z$, for all $x, y \in R$, then d is centralizing. **Proof:** Given hypothesis $d(x)d(y) - xy \in Z$, for all $x, y \in R$. Replacing x by zx in the hypothesis, we get $d(x)\alpha(z)d(y) + x(d(z)d(y) - zy) \in Z$, for all x, y, $z \in R$. (3.16)Commuting (3.16) with x, we have $[d(x)\alpha(z)d(y), x] = 0$, for all x, y, $z \in \mathbb{R}$ and so $[d(x)\alpha(z), x]d(y) + d(x)\alpha(z)[d(y), x] = 0$, for all x, y, z $\in \mathbb{R}$. Writing $\alpha(z)$ by zd (t), t \in R in this equation and using this equation yields that [d(x)zd(t), x]d(y) + d(x)zd(t)[d(y), x] = 0.That is, [d(x)zd(t)[d(y), x] = 0, for all t, x, y, z $\in \mathbb{R}$. Taking x instead of y in the above equation, we find that d(x)zd(t)[d(x), x] = 0, for all t, x, $z \in R$. (3.17)Multiplying (3.17) on the left by x, we have xd(x)zd(t)[d(x), x] = 0, for all t, x, $z \in \mathbb{R}$. (3.18)Again replacing z by xz in (3.18), we obtain d(x)xzd(t)[d(x), x] = 0, for all t, x, z $\in \mathbb{R}$. (3.19)Subtracting (3.18) from (3.19), we see that [d(x), x] z d(t) [d(x), x] = 0. (3.20)Again multiplying (3.20) on the left by d(t), we have d(t)[d(x),x]zd(t)[d(x),x] = 0, for t, x, $z \in \mathbb{R}$. Since R is semiprime ring, we get d(t)[d(x), x] = 0, for all t, $x \in R$. Substituting tx for t in the last equation and using the last equation, we obtain $d(x)\alpha(t)[d(x),x] = 0$, for all t, $x \in R$. Using the same arguments in the proof of Theorem 3.1(i), we conclude that $[d(x), x] \alpha(t) [d(x), x] = 0$, for all t, x \in R.Again using the semiprimeness of R, we get [d(x), x] = 0, for all x \in R. This yields that d is commuting, and so d is centralizing. **Corollary 3.8:** Let *R* be a prime ring and *d* be an $(\alpha, 1)$ reverse derivation of *R*. If *R* admits an $(\alpha, 1)$ reverse derivation such that $d(x)d(y) - xy \in Z$, for all $x, y \in R$, then d is centralizing. In the similar manner of Theorem 4, we obtain the following theorem.

Theorem 3.9: Let R be a semiprime ring and d be an $(\alpha, 1)$ reverse derivation of R. If R admits an $(\alpha, 1)$ reverse derivation such that $d(x)d(y) + xy \in Z$, for all $x, y \in R$, then d is centralizing.

Corollary 3.10: Let R be a prime ring and d be an $(\alpha, 1)$ reverse derivation of R. If R admits an $(\alpha, 1)$ reverse derivation such that $d(x)d(y) + xy \in Z$, for all $x, y \in R$, then d is centralizing.

Theorem 3.11: Let *R* be a semiprime ring and *d* be an $(\alpha, 1)$ reverse derivation of *R*. If *d* satisfies one of the following conditions, then d is centralizing.

(i) $d(xoy) = (xoy)_{\alpha,1}$, for all $x, y \in R$.

© 2021 JETIR December 2021, Volume 8, Issue 12 www.jetir.org (ISSN-23	49-5162)
(ii) $d(xoy) = -(xoy)_{\alpha,1}$, for all $x, y \in R$.	
Proof: (i) Assume that $d(xoy) = (xoy)_{\alpha,1}$, for all $x, y \in R$.	
Replacing x by yx, we get $d((yx)oy) = ((yx)oy)_{\alpha,1}$, for all $x, y \in R$.	
$d(y(xoy) - [y, y]x) = y(xoy)_{\alpha, 1} - [y, y]x, \text{ for all } x, y \in R.$	
$d(xoy)\alpha(y) + (xoy)d(y) - xd([y, y]) = y(xoy)_{\alpha, 1}, \text{ for all } x, y \in R.$	
Using hypothesis, we obtain $(xoy)_{\alpha,1}\alpha(y) + (xoy)d(y) - x[y,y]_{\alpha,1} = y(xoy)_{\alpha,1}$, for all $x, y \in R$.	
Implies that $(xoy)d(y) = 0$, for all $x, y \in R$.	(3.21)
Interchange x and y place in (3.21), we have $(yox)d(x) = 0$, for $x, y \in R$.	(3.22)
Replacing y by zy in (3.22) and using (3.21), we get $[x, z]yd(x) = 0$, for all x, y, $z \in \mathbb{R}$.	
Again replacing z by $d(x)$ in the above equation, we have $[x, d(x)]yd(x) = 0$, for all x, y $\in \mathbb{R}$.	(3.23)
Replacing y by yx in (3.23), we get $[x, d(x)]yxd(x) = 0$.	(3.24)
Multiplying (3.23) on the right of x, we have $[x, d(x)]yd(x)x = 0$, for all x, y $\in \mathbb{R}$.	(3.25)
Subtracting (3.25) from (3.24), we arrive at $[x, d(x)] y [x, d(x)] = 0$, for all x, y $\in \mathbb{R}$.	
By the semiprimeness of R, we find that $[x, d(x)] = 0$, for all $x \in R$ and so $[x, d(x)] \in Z$.	
Hence <i>d</i> is commuting and so centralizing.	
(ii) In the similar manner, we can prove that $d(xoy) = -(xoy)_{\alpha,1}$, for all $x, y \in R$.	
Corollary 3.12: Let R be a prime ring and d be an $(\alpha, 1)$ reverse derivation of R. If d satisfies one of the	
following conditions, then <i>d</i> is centralizing.	
(i) $d(xoy) = (xoy)_{\alpha,1}$, for all $x, y \in R$.	
(ii) $d(xoy) = -(xoy)_{\alpha,1}$, for all $x, y \in \mathbb{R}$.	

REFERENCES

- [1] Argac.N, 2006. On prime and semiprime rings with derivations, Algebra Colloq., 13(3): 371-380.
- [2] Bell.H.E and Martindale, 1987. Centralizing mappings of semiprime rings, Can.Math.Bull, 30: 92–101.
- [3] Bell.H.E and Kappe.L.C, 1989. Rings in which derivations satisfy certain algebraic conditions, Acta. Math.Hungar, 53: 339–346.
- [4] Bresar.M and Vukman.J, 1989. On some additive mapping in rings with involution, Aeq.Math.,38: 178-185.
- [5] Jaya Subba Reddy.C and Hemavathi.K, 2014. Reverse Derivations on Semi prime rings, Ultra Scientist of Physical Sciences (Int.J. Phy. Sci.), 26(1A): 111-113.
- [6] Jaya Subba Reddy.C, Hemavathi.K and Gurivi Reddy.P, 2014. Some Results on Reverse Derivations in Prime Rings, Math.Sci.Int.Research.J, 3(2): 734-735.
- [7] Jaya Subba Reddy.C and Haseena.Sk, 2021. Homomorphism or Anti-Homomorphism of Left (α, 1) derivations in Prime rings, Int.J.Mathematical Archive, 12(5): 45-49.
- [8] Jaya Subba Reddy.C and Haseena.Sk, 2021. (α, 1)-Reverse derivations on Prime near rings, International Journal Algebra, 15(40): 165- 170.
- [9] Jaya Subba Reddy.C, Haseena.Sk and Chennupalle Divya, 2021. On Jordan ideals and Generalized (α, 1)- Reverse derivations in *- prime rings, Journal of University of Shanghai for Science and Technology, 23(11): 236- 242.

© 2021 JETIR December 2021, Volume 8, Issue 12

- [10] Mayne.J.H, 1976. Centralizing auto-morphisms of prime rings, Can.Math.Bull, 19: 113–115.
- [11] Merva Ozdeir and Neset Aydin, 2018. (α, β)-Reverse derivations on Prime and Semiprime rings, Int. J.Open problems in Comp.& Math., 11(3): 48- 59.
- [12] Muhammad Anwar Chaudry, Oznus Golbasi and Emine Koc, 2015. Some results on Generalized (α, β) Derivations in *- prime rings, Int.J.Math.Math.Sci., 2015: 1-6.
- [13] NagaMalleswari.G, Sreenivasulu.S and Shobhalatha.G, 2020. Centralizing properties of (α, 1) derivations in Semiprime rings, Int.J.Math.And Appl., 8(1): 127-132.
- [14] Posner.E.C, 1957. Derivations in prime rings, Proc.Amer.Math.Soc, 8: 1093-1100.
- [15] Samman.M and Alyamani.N, 2007. Derivations and reverse derivations in semiprime rings, Int.J. Forum, 39(2): 1895-1902.
- [16] Sandhu.G.S and Kumar.D, 2019. Annihilator conditions of multiplicative (Generalized) reverse derivation on prime rings, Int.Elec.J.Algebra, 25: 87-103.
- [17] Yenigul.M.S and Argac.N, 1994. On prime and semiprime rings with α derivations, Turk.J.Math., 18: 280-284.

